
WordNet
WordNet is a lexical database of the English language that groups words into sets of

synonyms called synsets, and provides definitions and usage examples for each synset.

It also includes relations between words such as hyponymy/hypernymy

(subordinate/superordinate) and meronymy/holonymy (part/whole), as well as cross-

references to other synsets. WordNet is widely used in natural language processing and

computational linguistics applications, and has been the basis for the development of

many other language resources and tools.

Imports

Noun

Selecting noun

All Synsets for the noun

[Synset('hair.n.01'), Synset('hair's-breadth.n.01'), Synset('hair.n.03'), S
ynset('hair.n.04'), Synset('haircloth.n.01'), Synset('hair.n.06')]

Synset definition

'a covering for the body (or parts of it) consisting of a dense growth of t
hreadlike structures (as on the human head); helps to prevent heat loss'

In []: import math

from nltk import word_tokenize
from nltk.corpus import wordnet as wn
from nltk.wsd import lesk
from nltk.corpus import sentiwordnet as swn
from nltk.book import text4

In []: selected_noun = "hair"

In []: print(wn.synsets(selected_noun, pos=wn.NOUN))

In []: selected_noun_synset = wn.synsets(selected_noun)[0]

In []: selected_noun_synset.definition()

Out[]:

Synset usage examples

['he combed his hair',
 'each hair consists of layers of dead keratinized cells']

Synset lemmas

[Lemma('hair.n.01.hair')]

Traversing up the WordNet hierarchy

Synset('hair.n.01')
Synset('body_covering.n.01')
Synset('covering.n.01')
Synset('natural_object.n.01')
Synset('whole.n.02')
Synset('object.n.01')
Synset('physical_entity.n.01')
Synset('entity.n.01')

WordNet nouns if is an object converges to physical_entity or if it is an idea converges

abstraction. Then they converge into entity.

Printing: hypernyms, hyponyms, meronyms, holonyms,
antonym.

In []: selected_noun_synset.examples()

Out[]:

In []: selected_noun_synset.lemmas()

Out[]:

In []: curr = selected_noun_synset
while curr:
 print(curr)
 if not curr.hypernyms():
 break
 curr = curr.hypernyms()[0]

In []: print("hypernyms:", selected_noun_synset.hypernyms(), "\n")
print("hyponyms:", selected_noun_synset.hyponyms(), "\n")
print("meronym:", selected_noun_synset.part_meronyms(), "\n")
print("holonyms:", selected_noun_synset.part_holonyms(), "\n")

antonyms = []
for synset in wn.synsets(selected_noun):
 for word in synset.lemmas():
 for antonym in word.antonyms():
 antonyms.append(antonym.name())
print("antonym:", antonyms, "\n")

hypernyms: [Synset('body_covering.n.01')]

hyponyms: [Synset('beard.n.04'), Synset('body_hair.n.01'), Synset('coat.n.0
3'), Synset('cowlick.n.01'), Synset('down.n.05'), Synset('eyebrow.n.01'), S
ynset('eyelash.n.01'), Synset('facial_hair.n.01'), Synset('forelock.n.02'),
Synset('guard_hair.n.01'), Synset('hairdo.n.01'), Synset('lock.n.02'), Syns
et('mane.n.01'), Synset('mane.n.02'), Synset('pubic_hair.n.01')]

meronym: [Synset('hairline.n.02'), Synset('part.n.10')]

holonyms: [Synset('integumentary_system.n.01')]

antonym: []

Verb

Selecting verb

All Synsets for the verb

[Synset('run.v.01'), Synset('scat.v.01'), Synset('run.v.03'), Synset('opera
te.v.01'), Synset('run.v.05'), Synset('run.v.06'), Synset('function.v.01'),
Synset('range.v.01'), Synset('campaign.v.01'), Synset('play.v.18'), Synset(
'run.v.11'), Synset('tend.v.01'), Synset('run.v.13'), Synset('run.v.14'), S
ynset('run.v.15'), Synset('run.v.16'), Synset('prevail.v.03'), Synset('run.
v.18'), Synset('run.v.19'), Synset('carry.v.15'), Synset('run.v.21'), Synse
t('guide.v.05'), Synset('run.v.23'), Synset('run.v.24'), Synset('run.v.25')
, Synset('run.v.26'), Synset('run.v.27'), Synset('run.v.28'), Synset('run.v
.29'), Synset('run.v.30'), Synset('run.v.31'), Synset('run.v.32'), Synset('
run.v.33'), Synset('run.v.34'), Synset('ply.v.03'), Synset('hunt.v.01'), Sy
nset('race.v.02'), Synset('move.v.13'), Synset('melt.v.01'), Synset('ladder
.v.01'), Synset('run.v.41')]

Synset definition

'a score in baseball made by a runner touching all four bases safely'

Synset usage examples

In []: selected_verb = "run"

In []: print(wn.synsets(selected_verb, pos=wn.VERB))

In []: selected_verb_synset = wn.synsets(selected_verb)[0]

In []: selected_verb_synset.definition()

Out[]:

['the Yankees scored 3 runs in the bottom of the 9th',
 'their first tally came in the 3rd inning']

Synset lemmas

[Lemma('run.n.01.run'), Lemma('run.n.01.tally')]

Traversing up the WordNet hierarchy

Synset('run.n.01')
Synset('score.n.10')
Synset('success.n.02')
Synset('attainment.n.01')
Synset('accomplishment.n.01')
Synset('action.n.01')
Synset('act.n.02')
Synset('event.n.01')
Synset('psychological_feature.n.01')
Synset('abstraction.n.06')
Synset('entity.n.01')

WordNet verb if is an physical activity converges to entity or if it is an idea converges

make.

Printing: hypernyms, hyponyms, meronyms, holonyms,
antonym.

In []: selected_verb_synset.examples()

Out[]:

In []: selected_verb_synset.lemmas()

Out[]:

In []: curr = selected_verb_synset
while curr:
 print(curr)
 if not curr.hypernyms():
 break
 curr = curr.hypernyms()[0]

In []: print("hypernyms:", selected_verb_synset.hypernyms(), "\n")
print("hyponyms:", selected_verb_synset.hyponyms(), "\n")
print("meronym:", selected_verb_synset.part_meronyms(), "\n")
print("holonyms:", selected_verb_synset.part_holonyms(), "\n")

antonyms = []
for synset in wn.synsets(selected_verb):
 for word in synset.lemmas():
 for antonym in word.antonyms():
 antonyms.append(antonym.name())
print("antonym:", antonyms, "\n")

hypernyms: [Synset('score.n.10')]

hyponyms: [Synset('earned_run.n.01'), Synset('run_batted_in.n.01'), Synset(
'unearned_run.n.01')]

meronym: []

holonyms: []

antonym: ['malfunction', 'idle']

Morphy

Word as Noun

patient

Word as Adjective

patient

Word Similarity

Wu-Palmer similarity

[Synset('teacher.n.01'), Synset('teacher.n.02')]
[Synset('student.n.01'), Synset('scholar.n.01')]

0.14285714285714285

The Wu-Palmer similarity metric is a measure of semantic relatedness between words

that takes into account their distance in a semantic hierarchy. Even though the words

should be closely related Wu-Palmer similarity metric gives less score.

In []: word = "patient"

In []: print(wn.morphy(word, wn.NOUN))

In []: print(wn.morphy(word, wn.ADJ))

In []: print(wn.synsets("teacher"))
print(wn.synsets("student"))

In []: teacher_synset = wn.synset('teacher.n.01')
student_synset = wn.synset('student.n.01')
teacher_synset.path_similarity(student_synset)

Out[]:

Lesk algorithm

Synset('ring.n.01') a characteristic sound
Synset('ring.n.02') a toroidal shape
Synset('hoop.n.02') a rigid circular band of metal or wood or other materia
l used for holding or fastening or hanging or pulling
Synset('closed_chain.n.01') (chemistry) a chain of atoms in a molecule that
forms a closed loop
Synset('gang.n.01') an association of criminals
Synset('ring.n.06') the sound of a bell ringing; ; ; --E. A. Poe
Synset('ring.n.07') a platform usually marked off by ropes in which contest
ants box or wrestle
Synset('ring.n.08') jewelry consisting of a circlet of precious metal (ofte
n set with jewels) worn on the finger
Synset('band.n.12') a strip of material attached to the leg of a bird to id
entify it (as in studies of bird migration)
Synset('ring.v.01') sound loudly and sonorously
Synset('resound.v.01') ring or echo with sound
Synset('ring.v.03') make (bells) ring, often for the purposes of musical ed
ification
Synset('call.v.03') get or try to get into communication (with someone) by
telephone
Synset('surround.v.01') extend on all sides of simultaneously; encircle
Synset('ring.v.06') attach a ring to the foot of, in order to identify

Synset('ring.n.08')
Synset('ring.v.06')

The Lesk algorithm could be applied to disambiguate the meaning of words in sentences

SentiWordNet

In []: lesk_word = "ring"
for ss in wn.synsets(lesk_word):
 print(ss, ss.definition())

In []: sent = ['I', 'gave', 'her', 'a', 'ring', '.']
print(lesk(sent, 'ring', 'n'))
print(lesk(sent, 'ring'))

SentiWordNet is a lexical resource that assigns sentiment scores to words in a

natural language text. It is based on WordNet, a large lexical database of English

words, and provides a way to determine the positivity, negativity, and neutrality of

words based on their meanings.

SentiWordNet can be used in NLP applications such as sentiment analysis, opinion

mining, and text classification, where the goal is to identify the sentiment of text

data.

It can also be used in machine learning to enhance the accuracy of the models that

rely on sentiment analysis for decision making.

<repose.n.03: PosScore=0.625 NegScore=0.0>
Positive score = 0.625
Negative score = 0.0
Objective score = 0.375

<peace.n.03: PosScore=0.125 NegScore=0.5>
Positive score = 0.125
Negative score = 0.5
Objective score = 0.375

In []: emotionally_charged_word = "serenity"
serenity_senti_synsets = swn.senti_synsets(emotionally_charged_word)

for senti_synset in serenity_senti_synsets:
 print(senti_synset)
 print("Positive score = ", senti_synset.pos_score())
 print("Negative score = ", senti_synset.neg_score())
 print("Objective score = ", senti_synset.obj_score())
 print()

In []: sentence = "The traffic on the way to work was terrible, but the coffee from my favorite shop helped brighten my day."

tokens = word_tokenize(sentence)
for token in tokens:
 senti_synsets = list(swn.senti_synsets(token))
 if senti_synsets:
 senti_synset = senti_synsets[0]
 pos_score = senti_synset.pos_score()
 neg_score = senti_synset.neg_score()
 obj_score = senti_synset.obj_score()
 print(f"{token:<9} Positive = {pos_score:<6} Negative = {neg_score:<6
 else:
 print(f"{token:<9} No score found")

The No score found
traffic Positive = 0.0 Negative = 0.0 Objective = 1.0
on Positive = 0.0 Negative = 0.0 Objective = 1.0
the No score found
way Positive = 0.0 Negative = 0.0 Objective = 1.0
to No score found
work Positive = 0.0 Negative = 0.0 Objective = 1.0
was Positive = 0.0 Negative = 0.0 Objective = 1.0
terrible Positive = 0.0 Negative = 0.625 Objective = 0.375
, No score found
but Positive = 0.0 Negative = 0.0 Objective = 1.0
the No score found
coffee Positive = 0.0 Negative = 0.0 Objective = 1.0
from No score found
my No score found
favorite Positive = 0.25 Negative = 0.0 Objective = 0.75
shop Positive = 0.0 Negative = 0.0 Objective = 1.0
helped Positive = 0.0 Negative = 0.0 Objective = 1.0
brighten Positive = 0.0 Negative = 0.0 Objective = 1.0
my No score found
day Positive = 0.0 Negative = 0.0 Objective = 1.0
. No score found

Here, we see that the positive score for "favorite" is moderate, while the negative score

for "terrible" is relatively high. This is consistent with our intuitive understanding of the

sentence as being somewhat mixed or neutral in overall sentiment, but leaning slightly

negative due to the negative sentiment associated with the traffic.

Knowing the sentiment scores for words in a sentence can be very useful in many NLP

applications, such as sentiment analysis, opinion mining, and text classification. By

analyzing the sentiment of words and phrases in a text, we can gain insight into the

attitudes and opinions expressed in that text, and use that information to make

predictions or recommendations about how to respond or act on that text. However, it's

important to note that sentiment analysis is still a challenging problem, and the accuracy

of sentiment scores can be affected by many factors, such as context, sarcasm, and the

nuances of language.

Collocations

In linguistics, a collocation is a sequence of words or terms that co-occur more

often than would be expected by chance.

Collocations can be made up of two or more words and are often idiomatic, meaning

that their meaning cannot be inferred from the meanings of their individual words.

Collocations are important in language learning and natural language processing, as

they can provide insights into how words are used together in different contexts.

Collocations of nltk text4

United States; fellow citizens; years ago; four years; Federal
Government; General Government; American people; Vice President; God
bless; Chief Justice; one another; fellow Americans; Old World;
Almighty God; Fellow citizens; Chief Magistrate; every citizen; Indian
tribes; public debt; foreign nations

Mutual information

probability(God bless) = 0.0016957605985037406
probability(God) = 0.011172069825436408
probability(bless) = 0.0085785536159601
pmi = 4.145157780720282

The mutual information score for the "God bless" collocation is 4.15, which is a high

score. This suggests that "God" and "bless" are highly associated with each other and

are very likely to form a collocation. As "God bless" is a common and frequently used

expression in English, particularly in religious and patriotic contexts. The high mutual

information score suggests that the "God bless" collocation could be a useful feature in

NLP applications that deal with sentiment analysis, topic modeling, or other tasks that

involve identifying and analyzing collocations in text.

In []: text4.collocations()

In []: text = ' '.join(text4.tokens)
vocab = len(set(text4))

gb = text.count('God bless')/vocab
print("probability(God bless) = ", gb)

g = text.count('God')/vocab
print("probability(God) = ", g)

b = text.count('bless')/vocab
print('probability(bless) = ', b)

pmi = math.log2(gb / (g * b))
print('pmi = ', pmi)

